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Abstract—Over the last decade, advances in high-throughput
sequencing and the availability of portable sequencers have
enabled fast and cheap access to genetic data. For a given sample,
sequencers typically output fragments of the DNA in the sample.
Depending on the sequencing technology, the fragments range
from a length of 150-250 at high accuracy to lengths in few tens
of thousands but at much lower accuracy. Sequencing data is
now being produced at a rate that far outpaces Moore’s law
and poses significant computational challenges on commodity
hardware. To meet this demand, software tools have been
extensively redesigned and new algorithms and custom hardware
have been developed to deal with the diversity in sequencing
data. However, a standard set of benchmarks that captures the
diverse behaviors of these recent algorithms and can facilitate
future architectural exploration is lacking. To that end, we
present the GenomicsBench benchmark suite which contains
12 computationally intensive data-parallel kernels drawn from
popular bioinformatics software tools. It covers the major steps
in short and long-read genome sequence analysis pipelines such as
basecalling, sequence mapping, de-novo assembly, variant calling
and polishing. We observe that while these genomics kernels have
abundant data level parallelism, it is often hard to exploit on
commodity processors because of input-dependent irregularities.
We also perform a detailed microarchitectural characterization
of these kernels and identify their bottlenecks. GenomicsBench
includes parallel versions of the source code with CPU and GPU
implementations as applicable along with representative input
datasets of two sizes - small and large.

Index Terms—Genomics, Bioinformatics, Benchmarking, Com-
puter Architecture.

I. INTRODUCTION

Genomics is at the forefront of the precision medicine
revolution. Genome sequencing can help in early cancer de-
tection [1], developing targeted therapies to different tumor
mutations [2], identifying the causes of complex genetic
diseases [3], assessing risk factors, and developing new drugs.
For example, 42% of the drugs approved by FDA in 2018
were based on precision medicine data obtained from genome
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sequencing [4]. With the advent of portable and cheap se-
quencers, it is now feasible to test and monitor the emergence
of novel infectious diseases such as COVID-19 [5] among our
population and take timely action to prevent their spread.

A genome is a long string of DNA bases or nucleotides (A,
C, G and T). The human genome, for example, contains ∼6
billion bases, ∼3 billion bases per DNA strand.
Genome sequencing refers to the process of determining the
sequence of bases (i.e., A, C, G and T) in an individual’s DNA.
Genome sequencers typically read DNA by fragmenting it into
billions of short substrings (called “reads”).

Genome sequencing technology is far outpacing Moore’s
law in computing. Over the last decade, they have become
increasingly cheaper, faster, more portable, and produce longer
reads. The cost to sequence a human genome has dropped
from $10 million, a decade ago, to less than $1000 today.
Sequencing providers like Illumina can sequence a human
genome for $600 [6] and BGI/MGI [7] has further reduced the
cost to $100. Apart from the dramatic reductions in cost, there
has also been a corresponding increase in sequencing machine
throughput. For example, MGI’s DNBSEQ-TX and Illumina’s
Novaseq 6000 produce 20 Terabases [8] and 3.3 Terabases per
day respectively [9]. In addition, sequencing no longer requires
large bench-top instruments. Oxford Nanopore has introduced
the portable MinION sequencer which can produce longer
reads (few Kilobases to Megabases) in real-time, although
with a higher error rate (5-15%). These portable sequencers
also enable a kind of software-defined sequencing paradigm by
exposing interfaces to control the length of DNA in real-time
as it passes through the pore [10]. Taken together, all these
developments have given rise to widespread usage of genome
sequencing and ushered in the era of population genomics
with several countries/organizations aiming to sequence the
genomes of millions of humans [11]–[13]. However, comput-
ing solutions, hampered by challenges in scaling transistors,
have not been keeping pace.

In this paper, we identify commonly used modern se-
quencing pipelines, characterize their performance, and
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Fig. 1. Common workflows in genomics

extract their compute-intensive kernels. The goal is to com-
pile a standardized genome sequencing benchmark suite that
highlights the growing compute need in genomics and helps
shape future computing research in this space. Such an effort
has been lacking for this important computational domain.
Some notable prior works that perform detailed architecture
characterization of important bioinformatics workloads such as
BioPerf [14], BioBench [15] and MineBench [16] were carried
out in the last decade when sequencing technologies were still
nascent and not so diverse. Modern sequencing pipelines have
vastly different bandwidths, latencies, portability requirements,
algorithms, and pipelines than those used a decade ago. For
instance, new kernels that leverage vectorized implementations
for dynamic programming are now common. Machine learning
algorithms are now widely used to process long but noisy
reads. There is a wide variety of sequencers that vary in terms
of throughput, read length, and accuracy, to meet different
medical research and clinical needs. These have resulted in
a plethora of bioinformatics tools and pipelines. Without a
standardized benchmark suite that represents common com-
putational kernels, it becomes increasingly difficult to design
efficient computing system and processor architectures for this
rapidly emerging domain. There is also growing interest in
developing custom hardware solutions for sequencing [17].
These efforts can also greatly benefit from the availability of
a genomics benchmark suite.

To this end, we present the GenomicsBench benchmark
suite which covers the three key classes of sequencing-
based analysis: reference-guided assembly, de-novo assembly
and metagenomics. To select benchmarks, we identify the
most popular and well-maintained software tools used for
different steps in these applications. We then extracted the
time-consuming kernels in these tools and analyzed their

performance characteristics. We observe that many of these
kernels have a high degree of data-parallelism. But they are
irregular, making it challenging for GPUs to exploit them. This
motivates the need for newer architectures to exploit irregular
data-parallelism, or newer vectorization friendly algorithms for
these computational tasks.

To summarize, this paper makes the following contributions:
• We present the GenomicsBench benchmark suite consist-

ing of 12 representative kernels spanning the major steps
in short and long-read sequence analysis pipelines such
as basecalling, sequence alignment, de-novo assembly,
variant calling, and polishing.

• We perform a detailed analysis of the available paral-
lelism in these benchmarks and observe that while these
benchmarks have abundant data-parallelism, it cannot be
easily exploited on commodity hardware due to signifi-
cant irregularity.

• We perform a detailed characterization of the microarchi-
tectural performance bottlenecks, memory access charac-
teristics and thread scaling behavior of these benchmarks.

• We will open-source both the benchmark suite and input
datasets for the benefit of the broader research commu-
nity.

II. BACKGROUND AND METHODOLOGY

A. Common Genomics Pipelines

In this section we describe some common genomics
pipelines to analyze short and long read sequencing data
(also illustrated in Figure 1). All three pipelines start with
the raw sequencer output. Given a biological sample, typ-
ically, multiple copies of the contained genome sequence
are extracted and then decomposed into smaller nucleotide
fragments. A sequencer reads the sequence of nucleotides in



the fragments and generates raw signals based on what it reads.
The first step in all the three pipelines prior to downstream
analyses is the interpretation of these signals to derive reads,
which are sequences of bases over the nucleotide alphabet
{A,C,G,T}. This step is called basecalling. For Illumina
sequencing machines, the signal data are fluorescence images
which are converted into bases using a proprietary basecaller,
Bustard [18]. For Oxford Nanopore (ONT) sequencers, raw
signals are the current perturbations in the nanopore (e.g., in
fast5 format). Guppy [19] is ONT’s proprietary basecaller
software. We characterize the open-source research basecaller
from ONT, Bonito [20] as part of the nn-base kernel
(Section III), which demonstrates higher basecalling accuracy
than Guppy [21].
Reference Guided Assembly: This pipeline reconstructs the
sample genome by aligning reads from it to a reference
genome and identifies differences in the sample (also called
variants) compared to the reference genome. Typically, small
differences, i.e., substitutions, short insertions and deletions
(< 50 bases) are identified. Sufficient number of copies of
the sample genome need to be sequenced to ensure random
sequencing errors can be distinguished from true variations
(each genome position is covered 30 − 50× on average).
This is especially needed for long reads from PacBio and
ONT which have 5 − 15% error rate per base [19], [22],
resulting in input datasets of several hundreds of gigabytes.
Subsequent analysis of this data can take several days on
a modern multicore processor [23]. Figure 1 a. shows the
two main time-consuming steps: (1) Read Alignment, which
determines the best location for each read in the reference
genome. (2) Variant Calling, which uses machine learning
or statistics-based models to gather support for variants from
aligned reads. BWA-MEM [24], [25] and GATK Haplotype
Caller [26] are the most popular short-read software tools
for these two steps recommended as part of GATK Best
Practices [27]. These account for ∼30-40% and ∼40% time
of the reference guided assembly pipeline respectively [25],
[28]. We select the fmi, bsw, phmm, nn-variant and dbg
kernels from this pipeline (Section III).
De Novo Assembly: This pipeline attempts to assemble the
reads into a genome de novo based on read overlaps in the
absence of a suitable reference. The availability of long reads
for de novo assembly has greatly improved the quality of
draft reference genomes. This is mainly because they can span
large structural variations (e.g, > 50 bases insertions/deletions,
large rearrangements) [29] and can help resolve mutations
from maternal and paternal chromosomes [30]. Long read
de novo assembly is typically done using the overlap-layout-
consensus method as shown in Figure 1 b. In the overlap
identification step, common seeds shared between read pairs
are used to identify potential overlapping regions. In the
layout step, these overlapping regions are extended into larger
contiguous regions. Finally the consensus step corrects small
errors in assembly. Large assembly errors are corrected in
a later graph-based polishing step. For long-read assembly
and polishing, Flye [31] and Racon [32] are popular software

tools. Assembly of the human genome using Flye [31] and
Racon [32] takes ∼4.5 days on a 64-thread server, each
contributing ∼30% to the overall time [23]. Basecalling is
performed using Guppy [19], ONT’s proprietary basecaller,
and also accounts for ∼30% of overall time [23]. We select
the chain, spoa, kmer-cnt kernels from this pipeline
(Section III).
Metagenomics Classification: The advent of portable se-
quencers like ONT MinION [33] has enabled several appli-
cations like real-time pathogen detection [34] and microbial
abundance estimation [35] in the field. Abundance estimation
involves aligning input microbial reads to a reference pan-
genome (consisting of reference genomes of all bacteria, virus,
fungi and humans) and later estimating the proportion of
different microbes in the sample as shown in Figure 1 c. It is
typically performed using software tools like Minimap2 [36]
and Centrifuge [37].

III. GENOMICSBENCH BENCHMARK SUITE

FM-Index Search (fmi): The FM-index (Full-Text Index
in Minute Space) is one of most common data-structures
in aligners such as Bowtie2 [38], BWA-MEM [24], [25],
SOAP3-dp [39] and metagenomics classification tools such
as Centrifuge [37]. It is used to identify the locations of short
matching substrings of the read (called seeds) in the reference
genome. The FM-index is attractive because of its low memory
footprint, ability to match substrings of any length and support
for inexact matching (i.e., identifying seeds with a small
number of edits with respect to the reference).

Figure 2 a. shows the FM-index constructed for a sample
reference (R) and an example search query from the read.
The FM-index consists of: (1) the suffix array (SA), which
contains the locations of lexicographically sorted suffixes of
the reference genome R, (2) the Burrows Wheeler Transform
(BWT), computed as the last column of the sorted suffix array
of the reference, (3) the count table (C) which stores the
number of characters in R lexicographically smaller than a
given character c and (4) the occurrence table (Occ) which
stores the number of occurrences of a character up to a certain
index in the BWT array.

The FM-index allows the backward search of a query of
length (|Q|) in O|Q|) iterations, with at most 2 memory
lookups per iteration (one each for computing the start and
end (s, e) intervals of the match). It is characterized by
irregular memory accesses to the large Occ table (blue arrows
in Figure 2 a.) and is both memory-latency and memory-
bandwidth bound. Since the memory access characteristics of
FM-index search are similar across different tools, we choose
the optimized super-maximal exact match (SMEM) search
computation in BWA-MEM2 [25] in our benchmark suite.
SMEM computation uses the FM-index to find the longest
exact match spanning a given position in the read.
Input Datasets: We provide small and large datasets, which
are a set of 1M and 10M human reads respectively, each 151
bases long, from sample SRR7733443 [25].
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Banded Smith-Waterman (bsw): The Smith-Waterman algo-
rithm [40] is a dynamic-programming algorithm that estimates
the pairwise similarity between pairs of sequences X and
Y with lengths m and n respectively in O(mn) time and
space. It is commonly used in sequence alignment tools
like BWA-MEM [24] and variant calling tools like GATK
Haplotype Caller [26], [27] to align millions to billions of
sequence pairs and is a major computation bottleneck. The
similarity score for DNA sequences is typically computed
using affine-gap penalties [41], which uses different penalties
for different edits (i.e., substitution, insertion and deletion)
and allows for identification of biologically meaningful short
insertions/deletions in pairwise alignments. It requires com-
putation of three matrices H , E and F corresponding to the
different edit types. For aligning sequences with a maximum of
w insertions/deletions, a banded version of Smith-Waterman is
commonly used (Figure 2 b. region between the black squares)
reducing time and space complexity to O(wn) where w is the
width of the band of cells computed in each row.

Hij = max{Hi−1,j−1 + s(i, j), Eij , Fij}
Ei+1,j = max{Hij − q, Eij} − e
Fi,j+1 = max{Hij − q, Fij} − e

. (1)

Equation 1 shows the recurrence relation for the Smith-
Waterman algorithm. s(i, j) is a pre-computed similarity score
between characters X[i] and Y [j] and the score in cell (i, j) of
matrix H (i.e., Hij) is the similarity score for substrings X[0, i]
and Y [0, j]. We choose the optimized banded Smith-Waterman
implementation in BWA-MEM2 [25] for our benchmark suite.
It makes use of inter-task parallelism to allocate similarly sized
sequence pair tasks to different SIMD lanes.
Input Datasets: Our small and large datasets use 100K and
10M seed extension pairs obtained from inputs to the Smith-
Waterman function in BWA-MEM2 for reads from human
sample SRR7733443 [25].
K-mer Counting (kmer-cnt): A k-mer is a fixed k-length
substring of a DNA sequence. K-mer counting counts the

number of occurrences of each unique k-mer in the input reads.
It is one of the most common tasks in bioinformatics sequence
analysis and is widely used in de novo assembly [31], [42],
error correction [43] and metagenomics classification [44].
Common use cases include filtering out low-frequency k-
mers in the input data that are likely to be sequencing errors,
finding high-frequency k-mers characteristic of repetitive ge-
nomic regions and constructing k-mer histograms to serve as
signatures of the input data [45]. Typical k-mer lengths are 15-
55. The computation task in k-mer counting is an incremental
update to a hash-table for each k-mer. These updates can
be parallelized across millions to billions of k-mers in the
input dataset. We focus on shared-memory k-mer counting and
characterize the k-mer counting implementation in the popular
Flye assembler [31].

Input Datasets: Our small and large datasets use 1K and
50K Oxford Nanopore reads from E.coli sequenced by Loman
lab [46].

De-Bruijn Graph Construction (dbg): Prior to calling
variants using the reads aligned to a region of the reference
genome (e.g., ∼100-1000 bases), it is necessary to correct
read alignment artifacts. Modern variant callers like GATK
Haplotype Caller [26], [27] and Platypus [47] do this by
re-assembling those reads into a De-Bruijn graph and later
traversing this graph to generate strings that are likely to
contain variants (called haplotypes). The graph is constructed
from both the k-mers of the read and the reference as shown in
Figure 2 c. Each node in the graph represents a unique k-mer
and each edge links adjacent k-mers in the input. A hash table
is used to track nodes that have already been inserted into the
graph. If cycles are found in the graph, graph construction
is repeated by increasing the k-mer size. Each input task to
this kernel is a set of reads aligned to a reference region. The
re-assembly tasks can be parallelized across different regions.
We model the De-Bruijn graph construction implementation in
the Platypus variant caller [47] for the benchmark suite that
accounts for >60% of its runtime.



Input Datasets: We use BWA-MEM aligned records from
the Platinum Genomes dataset [48]. Our small dataset uses a
region of chromosome 22 (bases 16M-16.5M) while the large
dataset uses the entire chromosome 22.
Pairwise Hidden Markov Model (pairHMM): Using the
reads aligned to a region of the reference genome and the can-
didate haplotypes identified from De-Bruijn graph traversal, a
pairwise alignment of each read to each candidate haplotype is
performed to identify the most likely haplotypes supported by
the reads. The total workload per region is |R|× |H| pairwise
alignments, where |R| and |H| are the number of reads
and haplotypes respectively. Pairwise alignment is performed
using a Hidden Markov Model (HMM) and the likelihood
score is computed using the following dynamic-programming
recurrence relations [49]:

Mij = (Mi−1j−1θ + Ii−1j−1κ +Di−1j−1λ) · Pij

Iij =Mi−1jτ + Ii−1jε
Dij =Mij−1ζ +Dij−1η

. (2)

where: Mij , Iij and Dij represent match, insertion and
deletion probabilities for aligning read substring R[0, i] to
haplotype substring H[0, j], where 0 ≤ i ≤ |R| and 0 ≤
j ≤ |H|. These are weighted by different transition and
emission parameters of the HMM: θ, κ, λ, τ, ε, ζ, η. Pij is
the prior probability of emitting bases (R[i], H[j]), computed
using the floating point base-quality scores for the read R.
Base-quality scores are typically provided by the basecaller
and indicate the confidence of the basecaller in calling each
base in the read. Low quality bases from the read contribute
a smaller amount to likelihood score computed above. The
computation in pairHMM differs from the Smith-Waterman
kernel described earlier mainly in the use of floating-point
computation. There exists abundant intra- and inter-task paral-
lelism in this workload. Intra-task parallelism arises from data-
parallel processing of cells along the wavefront as shown in
Figure 2 d. Inter-task parallelism arises by parallel processing
of different genome regions. We use the optimized SIMD
implementation in GATK Haplotype Caller [26] as part of the
benchmark suite and extend it to leverage inter-task parallelism
using multiple CPU threads.
Input Datasets: We use the read-haplotype pair inputs to the
calcLikelihoodScore function in GATK Haplotype Caller [26].
Our small dataset uses as input BWA-MEM aligned reads for
region chromosome 22:16M-16.5M, while the large dataset
uses reads aligned to the entire chromosome 22.
Chaining (chain): One of the most time-consuming steps in
de novo assembly of long reads is overlap estimation between
reads [31], [42]. We characterize the chaining implementation
from Minimap2 [36] which is one of the most popular tools
for estimating pairwise overlap between reads and extend it to
support inter-task parallelism across different pairs of reads.
Given a set of seeds (also called anchors) shared between a
pair of reads, chaining aims to group together a set of co-linear
seeds into a single overlapping region as shown in Figure 2 e.
The chaining algorithm is a 1D dynamic programming based

algorithm that compares each anchor with N previous anchors
(default = 25) to determine its best parent. The recurrence
relation used to estimate the maximal chaining score of the
ith anchor [36], [50] is:

score(i) = max
{
max
i>j≥1

{score(j) + α(j, i)− β(j, i)}, wi

}
(3)

where wi is the length of anchor i, α(j, i) is the number of
matching bases between anchors i and j after accounting for
overlaps between them and β(j, i) is a penalty that is set based
on the relative distance between a pair of anchors on the two
reads.
Input Datasets: Our input dataset uses the anchors for 1K and
10K reads from the Pacbio sequence data for the C.elegans
worm [50], [51] when computing overlaps with itself.
Partial-Order Alignment (poa): After assembling the ref-
erence genome of a new species, it is common to perform
a polishing step to correct small errors in assembly using
the aligned reads. Racon [52] is one of the most popular
tools for long-read polishing. Given a set of reads aligned
to the target genome, Racon first splits the reads into non-
overlapping windows called chunks (which can be processed
in parallel) and then incrementally constructs a partial-order
graph [53] by aligning new sequences to it using a SIMD
accelerated dynamic programming algorithm (see Figure 2 f).
Later, the consensus sequence is generated from the graph
using the heaviest bundle algorithm [54]. Each node in the
partial-order graph represents a base of the input sequence
and weighted edges represent support from different reads
in the chunk. Since the nodes in multiple branches of the
graph cannot be ordered relative to each other, the graph is
said to be partially ordered. Aligning new sequences to the
graph is the most time-consuming operation in Racon and
has complexity O((2np + 1)n|V |), where np is the average
number of incoming edges to nodes in the graph, |V | is the
number of nodes in the graph and n is the length of the
read chunk. Contrast this with Smith-Waterman which has
complexity O(mn), with regular data-dependencies. As used
in Racon, our poa benchmark builds the consensus sequence
for each chunk in a separate CPU thread.
Input Datasets: We use 1000 and 6000 consensus tasks for our
small and large datasets respectively. These are obtained when
polishing the Flye-assembled Staphylococcus aureus genome
with Minimap2-aligned ONT long reads [19].
Adaptive Banded Signal to Event Alignment (abea): Com-
paring a time-series of raw nanopore signal data to a reference
genome sequence is a common task in the polishing of long-
read sequencing data and detection of methylated bases (i.e.,
non-standard nucleotides apart from A, C, G, T, which play
an important role in controlling gene expression). After seg-
menting the signal data into different events based on sudden
changes in signal current, each event is then compared against
the k-mers of the reference genome using a computationally
intensive dynamic programming algorithm called adaptive
banded event alignment (ABEA) [55]. ABEA is the most time-
consuming kernel when performing methylation calling using



the software tool Nanopolish [56]. Event alignment is more
complex than banded sequence alignment since it requires an
adaptive band [57] to capture long gaps in optimal alignments
especially when dealing with long and error-prone Nanopore
reads. These long gaps arise because k-mers are often over-
represented (up to 2×) by multiple events as they are sam-
pled by the nanopore. Furthermore, event alignment uses 32-
bit floating point log-likelihood computation in its scoring
function and is computationally more expensive than sequence
alignment. We analyze the optimized GPU implementation of
ABEA [55] as part of the benchmark suite. In this heavily
optimized implementation, ABEA accounts for 24.5% of total
runtime.
Input Datasets: For ABEA, our small and large datasets use
1,000 and 10,000 raw FAST5 reads from chromosome 22
of NA12878, and the GRCh38 reference genome. This data
was obtained from the publicly available “Nanopore WGS
Consortium” dataset [58], [59].
Genomic Relationship Matrix (grm): All large-scale popu-
lation genomics studies need to account for potential ancestral
relationship between individuals in the study. This is done
by computing a N × N matrix called Genomic Relationship
Matrix (or GRM), where N in the number of individuals in
the study. Each element of the GRM Gij describes the average
genetic similarity between individuals and is computed as
follows:

Gij =
1

S
·

S∑
s=1

(xis − 2ps)(xjs − 2ps)

2ps(1− ps)
(4)

where xis and xjs indicate the number of copies of the non-
reference base at location s for individuals i and j respectively
and ps is expected frequency of a non-reference base at
location s in the population. S is the total number of SNV
(Single Nucleotide Variation) location markers in the reference
genome. We extract the GRM kernel from the popular popu-
lation genomics software PLINK2 [60]. The kernel performs
dense matrix multiplication and can benefit from parallel
computation of different output elements as shown in Figure 2
h.
Input Datasets: We compute the GRM on SNV data belonging
to 2504 individuals from 1000 Genomes Project Phase 3 [60].
Our small dataset uses 194K variants from chromosome 22
and our large dataset uses 1.07M variants from chromosome
1.
Neural Network-based Base Calling (nn-base): When
performing nanopore based genome sequencing, raw nanopore
signal data must be correctly converted to a sequence of nu-
cleotide bases through a process called basecalling discussed
earlier. As DNA moves through a nanopore, it does so at a
highly variable rate, and the resulting current is affected by
multiple consecutive nucleotides occupying the pore (∼5-10,
depending on the pore chemistry). Due to the limited resolu-
tion of the ADC sampler and unavoidable background noise,
there is considerable overlap between current levels measured
for different 5-mers. Basecallers resolve this ambiguity in
two stages. First, a deep recurrent or convolutional neural

Fig. 3. Overview of Bonito (left) and Clair (right)

network aggregates contextual information to determine the
most likely nucleotide observed at each time step. Using these
probabilities, a connectionist temporal classification decoder
[61] then determines the most likely sequence. The neural
network is by far the most time-consuming basecalling stage.
In order to make this computation regular and parallelizable,
existing basecallers segment the signal and perform inference
on many independent chunks, stitching the final sequence
together as a post-processing step. Our benchmark includes
the GPU-based CNN basecaller Bonito, which currently boasts
the highest basecalling accuracy [20].
Input Datasets: For basecalling, our small and large input
datasets are 100 and 1,000 raw FAST5 reads from chro-
mosome 20 of NA12878. This data was obtained from the
publicly available “Nanopore WGS Consortium” dataset [58].
Pileup Counting (pileup): A common pre-processing step in
long-read neural network variant callers such as Medaka [62]
involves parsing of alignment data for all reads aligned to
a region of the reference genome (called read pileup) and
generating counts for different bases, insertions and deletions
at these different pileup locations. These counts are later
analyzed by the recurrent neural network to call variants.
This pre-processing step is time consuming because it involves
random access into the alignment record to extract and parse
alignment information (represented as a CIGAR string [63]).
Fortunately, the pre-processing step can leverage inter-task
parallelism by distributing the processing of different 100
kilobase regions of the reference genome to different CPU
threads. The benchmark suite includes the inter-task parallel
version of pileup counting.
Input Datasets: We use the results from Minimap2 alignment
of ONT reads. Our small dataset uses aligned reads to the
Staphylococcus aureus genome [19], while the large dataset
uses reads aligned to chromosome 20 of sample HG002 [64].
Neural Network-based Variant Calling (nn-variant): Long-
read variants callers examine the read pileup for a particular
genome reference position and call homozygous and het-
erozygous variants with respect to that reference. We chose
to analyze the Clair variant caller because it outperforms
competing tools in terms of both performance and accuracy
for long reads [65]. As input, Clair accepts a size 33× 8× 4
tensor. Given a particular reference position, this tensor is
generated using pileup information for 16 bases flanking each
side (16+1+16 = 33), and considering the pileup counts for



each base (A,C,G,T) and strand (forward,reverse) individually
(2 ∗ 4 = 8). Furthermore, 4 different encodings of the same
information is used: (a) raw pileup counts, (b) support for
insertions relative to (a), (c) support for deletions relative to
(a), and (d) support for alternative variants or alleles relative
to (a). Clair uses a series of recurrent neural networks with
bidirectional long short-term memory (LSTM) units and fully-
connected layers to predict a potential variant’s genotype,
zygosity, and indel length of each haplotype. Refer to [65]
for network details.
Input Datasets: For benchmarking Clair on long reads, we
selected all raw FAST5 reads from the q13.12 region of
chromosome 20 of NA12878 from the “Nanopore WGS
Consortium” [58] dataset. These reads were basecalled using
high-accuracy Guppy 3.6.0, and mapped using Minimap2. Our
small dataset variant called the first 10,000 reference positions
from this region, and our larger dataset used 500,000.

CPU Intel Xeon E3-1240 v5 3.5 GHz; AVX2;
1 socket; 8 threads

L1 I&D cache 4 x 32KB Inst; 4 x 32KB Data, 8-way
L2 cache 4 x 256KB, 4-way
L3 cache 4 x 2 MB, 16-way

Memory bandwidth 31.79 GB/s
TABLE I

BASELINE SYSTEM CONFIGURATIONS.

IV. PERFORMANCE CHARACTERIZATION OF
BENCHMARKS

A. Characterization Methodology

Several of the genomic analysis tools described earlier
operate on large datasets and can run for several days. To
keep the study manageable, we adopt the following method-
ology. We first profile all software tools with Intel VTune
Profiler 2020 [66] as well as manual timing instrumentation to
identify the most time-consuming kernels in both single and
multi-thread settings. Later, we isolate these kernels and run
representative input datasets of two sizes. Kernel executions
with the small inputs finish in a few minutes, while the
large inputs take 5–20 minutes on a single-thread. Both
the small and large inputs capture the bottlenecks in
the original application and exercise the kernel in similar
ways (e.g., similar proportions of different dynamic instruc-
tions and memory accesses with different strides). We use
the MICA pintool [67] to compute statistics on instruction
distribution. Cache miss and memory stalls are obtained using
performance counter events from the hardware event-based
sampling collector [68]. All kernels and inputs/outputs are
extracted as-is from the original software tools. The tools
already support multithreading. For ease of benchmarking, we
made the following modifications to the extracted benchmarks:
(1) OpenMP parallelization with dynamic scheduling was
used to reliably evaluate thread scaling of the benchmark
after isolation from the software tool and (2) file I/O-related
driver code was added for reading inputs and writing results.
GPU benchmarks are characterized using Nvidia’s Visual

1The proportion of runtime taken by the pileup kernel increases dramat-
ically when a GPU is used for variant calling.

Profiler [69] and nvprof on the Nvidia Titan Xp GPU with
12GB GDDR5x memory. Table I details our experimental
machine configuration. We present characterization results for
all benchmarks except nn-variant which failed to complete
successfully using nvprof on both a native run as well as
within a Docker container.

B. Parallelism

1) CPU benchmarks

In this section, we present a detailed characterization of
the sources of parallelism in our CPU benchmarks and the
challenges in exploiting them.
Overview: Table II presents an overview of different bench-
marks and their corresponding parallelism motifs based on
the taxonomy provided in [45]. bsw, phmm, chain, spoa
and abea are dynamic programming based but have impor-
tant differences. The key ones are: (1) type of data depen-
dency present (e.g., 1D / 2D), (2) amount of computation
needed (e.g., banded/full matrix), (3) type of matrix traversal
(e.g., wavefront/row-wise) and (4) type of input (e.g., se-
quence/graph). Also present in the benchmark suite are kernels
that manipulate hash tables and perform graph construction
(dbg, spoa).

Some of the GenomicsBench benchmarks like grm and
kmer-cnt have regular compute patterns since their inputs
come in regular, pre-determined sizes. In contrast, a majority
of the GenomicsBench benchmarks work on inputs with vary-
ing sizes and characteristics and have irregular compute pat-
terns. Table III shows the data-parallellism granularity for each
of the irregular compute GenomicsBench benchmarks and the
corresponding data-parallel computation performed. Note that
it is possible to reduce the data-parallelism granularity further
by vectorizing each of the data-parallel computations shown
in the second column of Table III. However, this comes with
significant additional complexity arising from the complex
data dependencies present in the benchmarks (Figure 2). To
overcome this, implementations often speculate on the absence
of data dependencies to achieve high performance (e.g., [70]).

This complexity can often be traded-off for abundant paral-
lelism to be exploited across two other dimensions: (1) read-
level parallelism and (2) genome region-level parallelism as
shown in Table III. Since each of the benchmarks process
millions to billions of reads across millions of genome re-
gions there exists abundant data-parallelism across both these
dimensions. Several software tools have adopted this approach.
For example, BWA-MEM2 [25] has demonstrated significant
benefits by vectorizing inter-sequence computation instead of
vectorizing the cell updates for bsw.
Challenges in exploiting data parallelism: In spite of
abundant read-level / genome region-level parallelism in the
GenomicsBench benchmarks, it is difficult to exploit them
effectively in different software tools. To understand why,
consider the following hypothetical scenario where each data-
parallel computation entity discussed in Table III is assigned
to a separate vector lane. Each vector is replaced with a
new batch of tasks as soon as all of the ones currently



Benchmark Input Datatype Applications Chosen Tool % Time Spent in Tool Parallelism Motif
(single-thread)

fmi Short reads Read Alignment BWA-MEM2 38% Tree Traversal
Metagenomics Classification

bsw Short reads Read Alignment BWA-MEM2 31% Dynamic Programming
De-Novo Assembly

dbg Short reads Variant Calling Platypus 65% Graph Construction
De-Novo Assembly Hash Table

phmm Short reads Variant Calling GATK Haplotype Caller 70% Dynamic Programming
Error Correction

chain Long reads De-Novo Assembly Minimap2 47.4 % Dynamic Programming (1D)
Read Alignment

spoa Long reads Error Correction Racon 75 % Dynamic Programming
Graph Construction

abea Long reads Basecalling Nanopolish 71.4% Dynamic Programming
Variant Calling

grm NA Population Genomics PLINK2 92.8 % Dense Matrix Multiplication
nn-base Long reads Basecalling Bonito 95 % FP Matrix Multiplication

nn-variant Long reads Variant Calling Clair 57.2 % FP Matrix Multiplication
kmer-cnt Long reads De-Novo Assembly Flye 10% Hash Table

pileup Long reads Variant Calling Medaka 6.3 % 1 —
TABLE II

CATEGORIZATION OF BENCHMARKS. FOR BENCHMARKS WITH UTILITY IN MORE THAN ONE APPLICATION, THE SELECTED APPLICATION IS
UNDERLINED.
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Fig. 4. Distribution of the amount of data-parallel computation performed for each task (x-axis) and its frequency (y-axis) for the different benchmarks.
Variations in the computation needed for each task based on its size and data characteristics makes it difficult to exploit the abundant parallelism present in
each benchmark. To enable comparison across benchmarks, the normal probability distribution function (PDF) has been used to represent the frequency of
computation on the y-axis.

Benchmark Parallelism Data-Parallel
Granularity Computation

fmi Read batch # OCC Table Lookups
bsw Seed # Cell Updates
dbg Genome Region # Hash Table Lookups

phmm Genome Region # Cell Updates
chain Read # Input Anchors
spoa Read Chunk Window # Cell Updates

pileup Genome Region # Read Lookups
TABLE III

PARALLELISM GRANULARITY AND DATA-PARALLEL COMPUTATION FOR
IRREGULAR CPU BENCHMARKS. OTHER REGULAR COMPUTE

BENCHMARKS NOT SHOWN

assigned to it complete. For vectorization to be efficient,
all the tasks assigned to each lane must perform a similar
amount of computation. Any imbalances in the computation
across vector lanes can severely reduce the efficiency of vector
computation and lead to control divergence. For this reason,
the inputs to the bsw kernel, for example, are sorted based
on sequence lengths before being assigned to SIMD lanes.
However, even if input sequence lengths have been accounted
for, differences in input sequence content can greatly influence
the computation performed in each SIMD lane. This is because
matrix computation can also be aborted early when aligning
highly dissimilar sequences of similar length using bsw. As a
result we find that the AVX2 16-bit inter-sequence vectorized
bsw implementation in GenomicsBench performs 2.2× more

cell updates than the scalar implementation. Note that the
vectorization challenges outlined above exist not only for
CPU-based software tools but also for GPUs, which also
employ SIMD units to increase compute density.

Similar observations can also be made for the other irregular
CPU compute benchmarks. It can be seen from Figure 4 that
there exists significant variation in the amount of data-parallel
computation performed by different tasks in different bench-
marks. For phmm, which computes the most likely haplotype
given supporting reads, certain genome regions can have up to
1000× imbalance in the computation needed when compared
to the average case (as can be seen from the mean (5.2M ) and
maximum (4.41G) cell update values across different regions).
However, it must be noted that regions with such low or high
computational demand are fewer (as indicated by the lightly
shaded circles). Across different benchmarks we find that the
ratios of maximum to average computation per task can vary
from 4.1× to 8.3×.

2) GPU benchmarks

Whereas the CPU kernels selected for this benchmark suite
were diverse and often encountered challenges in exploiting
data parallelism, the GPU kernels we investigated had fairly



regular control flow and compute patterns. Predictable control
flow and data accesses are a prerequisite for efficient utilization
of GPU computing resources, and abea and nn-base were
likely implemented on the GPU for this reason.

abea nn-base
Branch efficiency 100 % 100 %

Warp efficiency 75.09 % 100 %
Non-predicated warp efficiency 70.18 % 94.43 %

SM utilization 70.53 % 99.83 %
Occupancy 31.41 % 88.47 %
TABLE IV

GPU KERNEL CONTROL FLOW AND COMPUTE REGULARITY

The abea and nn-base kernels both avoid branch di-
vergence entirely, and achieve relatively high warp efficiency.
This is shown in Table IV. Warp efficiency is defined as
the average fraction of active threads in a warp, and “non-
predicated” efficiency restricts the definition of active to
threads which are not executing predicated instructions. Neural
network basecallers such as Bonito break sequences of raw
nanopore signal into regular chunks of 4,000 consecutive mea-
surements and feed that data into a fixed-size neural network.
Since floating point matrix multiplication is computationally
intensive and involves very little control flow, nn-base is
able to achieve perfect warp efficiency and nearly-complete
occupancy and SM utilization. The few predicated instructions
reducing overall throughput are likely due to the fact that the
neural network of nn-base does not operate using filters of
sizes which are integer multiples of 32, the number of threads
in a warp. On the other hand, the abea kernel performs a
dynamic programming matrix computation instead of matrix
multiplication, it is limited by the execution and memory
dependencies inherent to the structure of the computation.
Furthermore, abea requires frequent synchronization between
warps. As a result, the SM utilization and warp efficiency are
lower.

C. Instruction Diversity

Instruction diversity characterization helps determine the
complexity of functional units needed for specialized hard-
ware. Figure 5 shows the dynamic instruction breakdown
for the different CPU benchmarks. The “Other” category
includes string, system call, prefetching, and synchronization
instructions.
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Fig. 5. Breakdown of dynamic instructions in different benchmarks. grm is
excluded because its multithreaded design to decompress inputs affects the
accuracy of measurements from the MICA pintool.

Among the benchmarks analyzed, phmm, bsw, and spoa
benefit from SIMD vectorization and have a high proportion

of vector computation instructions. It can be also be seen
that phmm is the only CPU kernel that performs floating
point computation, while the other kernels are dominated by
scalar integer computation. phmm also uses single-precision
floating point computation in most cases, and resorts to
double-precision floating point only in rare cases when single-
precision is insufficient to represent the result. bsw, phmm, and
chain are compute-intensive and have a lower proportion
of memory loads and stores when compared to memory-
intensive benchmarks like fmi. We also looked at the common
operations performed in vectorized benchmarks. For instance,
bsw uses blend instructions for cell updates and band
adjustment, and spoa extensively uses shift instructions to
compare against cells present in a previous column or diagonal
but which are part of a different SIMD vector.

D. Memory Access Characteristics

1) CPU benchmarks

In this section, we perform a detailed characterization
of the memory access patterns of different GenomicsBench
benchmarks.
Off-chip Data Requirements: Figure 6 shows the off-chip
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Fig. 6. Off-chip data requirements for different benchmarks.

data requirements for different GenomicsBench benchmarks.
It can be seen that benchmarks like fmi and kmer-cnt
have significantly higher off-chip data requirements, measured
in DRAM bytes per kilo-instruction (BPKI) (66.8 BPKI and
484.1 BPKI respectively). For fmi and kmer-cnt the mem-
ory access bottlenecks are due to irregular memory accesses
over large working sets,∼10 GB (FM-index) and∼8 GB (hash
table) respectively, with little spatial or temporal locality. In
kmer-cnt, there is low spatial locality because a 1-2 byte
counter is updated for every 64 bytes (cache block) read from
memory. Potential approaches to improve kmer-cnt per-
formance include implementing cache-friendly hashing tech-
niques like robin hood hashing [71], and improving temporal
locality since the k-mers to be inserted into the hash table are
known a priori.

In contrast, other benchmarks like spoa have modest off-
chip data requirements (6.62 BPKI), while compute-intensive
benchmarks like phmm have much lower data movement (0.02
BPKI) from off-chip memory.
Cache Miss Rates: Figure 8 shows the L1 and L2 cache
miss rates and percentage of CPU cycles spent stalling for
data. Notably in fmi and kmer-cnt, 41.5% and 69.2% of
CPU cycles are spent waiting for data. While fmi uses all the
bytes in a cache block when performing OCC table lookups,
kmer-cnt only updates a 1-2 byte counter per LLC miss
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Fig. 7. Thread scaling for different kernels in GenomicsBench. Dotted red line shows the maximum speedup achievable on the experimental system with 28
cores. Experiments were performed on a dual socket (14-core per socket Haswell machine (Intel(R) Xeon(R) CPU E5-2697 v3 @ 2.60GHz, AVX2) with 35
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and has poor spatial locality. Apart from these two, other
benchmarks spend <20% of CPU cycles waiting for data.
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Fig. 8. (a) L1 and L2 misses per kilo-instruction (MPKI) (b) Percentage of
CPU cycles spent for waiting for data.

2) GPU benchmarks

When accessing global memory, abea and nn-base ker-
nels were unable to achieve peak memory bandwidth due to
strided or irregular data accesses. This is shown in Table V.

abea nn-base
Global Load Efficiency 25.5 % 70.3 %
Global Store Efficiency 68.5 % 100 %

TABLE V
USEFUL PROPORTION OF GPU GLOBAL MEMORY BANDWIDTH USED.

The extent of irregularity of memory accesses in both
GPU kernels is a direct artifact of the type of computation
performed. For nn-base, neural network model weights and
inputs can be loaded in several large accesses at the start of
computation. Since Bonito’s convolutional neural network is
comprised of many layers of separable convolutions, these
matrix vector multiplications are not too large and can be
performed in shared memory. At the end, results are written
to global memory in contiguous transactions. For the abea
kernel, however, there are dependencies between consecutive
diagonal bands of the dynamic programming matrix which
are computed. In order to calculate the matrix efficiently, the
previous three rows (which the following band computation is
dependent on) are stored in Shared Memory. This leaves no
room to cache the reference’s k-mer current model and other
frequently accessed data in Shared Memory. The resulting
accesses to global memory are performed with sub-optimal
efficiency due to the decreased spatial locality of data accesses.

E. Thread Scaling

Figure 7 shows the thread scaling behavior of the multi-
threaded versions of the irregular CPU benchmarks. All inputs

to these benchmarks are grouped into independent tasks with
each task dynamically scheduled on a CPU thread using
OpenMP. Almost all GenomicsBench benchmarks benefit from
coarse-grained task-level parallelism. It can be seen that most
of the benchmarks achieve perfect scaling (bsw, dbg, phmm
and spoa), while fmi and chain achieve near-perfect
scaling. kmer-cnt uses close to the peak random access
memory-bandwidth on our system and does not scale well
with increasing number of threads, whereas pileup suffers
from random memory accesses.

F. Microarchitectural Bottleneck Analysis
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Fig. 9. Top-down microarchitectural bottleneck analysis of kernels (single
thread).

Figure 9 shows the results of top-down analysis [72] of
performance bottlenecks. It can be seen that memory-bound
benchmarks like fmi and kmer-cnt spend 44.4% and 86.6%
of their pipeline slots waiting for data. For fmi, >80%
of OCC table accesses lead to opening of a new DRAM
page making the accesses highly irregular. There is also little
spatial or temporal locality in k-mer counting. Each update
to the k-mer count table results in a last-level cache miss
leading to significant memory-latency related stalls. Some of
these stalls could potentially be mitigated by implementing
software prefetching [71], since the k-mers to be looked
up are known in advance. Compute-intensive benchmarks
like bsw, chain and phmm spend >50% of their pipeline
slots retiring instructions. They are bottlenecked by backend
core resources because of limited number of available ports
for scheduling vector and floating point instructions. grm
performs CPU-friendly dense matrix multiplication and makes
best use of available CPU pipeline slots (87.70% retiring).
The memory-related stalls in spoa and pileup result from
cache misses during incremental update of the partial-order
alignment graph and random accesses to the read alignment
records respectively.



V. RELATED WORK

The BioPerf benchmark suite [14] evaluates several DNA
and protein sequence analysis benchmarks such as BLAST
[73] and HMMER [74] and provides pre-compiled Alpha
binaries with Simpoints to facilitate architectural simula-
tion. Some of these benchmarks are further characterized in
BioBench [15] and have been shown to have a high ILP. Re-
cent updates to these benchmarks have also been proposed in
BioBench2. GenomicsBench improves coverage of these prior
benchmark suites by including both vectorized dynamic pro-
gramming kernels (bsw, phmm, spoa) and GPU-optimized
dense neural network kernels (nn-base, nn-variant).
Among the GenomicsBench benchmarks, only phmm and bsw
share similarities with HMMER and BLAST in performing
floating point matrix computation and local alignment with
Smith-Waterman respectively. Other benchmarking efforts also
focus on characterizing the BioBench benchmarks on different
architectural platforms [75], [76] and increasing its usabil-
ity [77]. GenomicsBench leverages some of the optimized
implementations for different short-read benchmarks proposed
in prior work [71], and expands its scope to cover a broader
diversity of sequence analysis steps and includes long-read
benchmarks. Prior work [78] identifies some of the key com-
putation kernels in secondary analysis, but with a focus on
short reads. Intel’s Genomics Kernel Library (GKL) [79] also
includes reference vectorized implementations of a few short-
read benchmarks like phmm.

VI. CONCLUSION

In this paper, we present the GenomicsBench benchmark
suite, containing 12 computationally intensive genomics ker-
nels drawn from popular bioinformatics software tools. We
perform detailed instruction level and microarchitectural anal-
ysis on these kernels to expose their performance bottlenecks.
We also observe that the irregular data-parallelism in these
benchmarks cannot be easily exploited by commodity hard-
ware. GenomicsBench will be open sourced to the broader
research community.
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novo genome assembly from long uncorrected reads,” Genome research,
vol. 27, no. 5, pp. 737–746, 2017.

[53] C. Lee, C. Grasso, and M. F. Sharlow, “Multiple sequence alignment
using partial order graphs,” Bioinformatics, vol. 18, no. 3, pp. 452–464,
2002.

[54] C. Lee, “Generating consensus sequences from partial order multiple
sequence alignment graphs,” Bioinformatics, vol. 19, no. 8, pp. 999–
1008, 2003.

[55] H. Gamaarachchi, C. W. Lam, G. Jayatilaka, H. Samarakoon, J. T.
Simpson, M. A. Smith, and S. Parameswaran, “Gpu accelerated adaptive

banded event alignment for rapid comparative nanopore signal analysis,”
BMC bioinformatics, vol. 21, no. 1, pp. 1–13, 2020.

[56] N. J. Loman, J. Quick, and J. T. Simpson, “A complete bacterial
genome assembled de novo using only nanopore sequencing data,”
Nature methods, vol. 12, no. 8, pp. 733–735, 2015.

[57] H. Suzuki and M. Kasahara, “Introducing difference recurrence relations
for faster semi-global alignment of long sequences,” BMC bioinformat-
ics, vol. 19, no. 1, pp. 33–47, 2018.

[58] “Nanopore wgs consortium data,” https://github.com/nanopore-wgs-
consortium/NA12878/blob/master/Genome.md.

[59] M. Jain, S. Koren, K. H. Miga, J. Quick, A. C. Rand, T. A. Sasani,
J. R. Tyson, A. D. Beggs, A. T. Dilthey, I. T. Fiddes et al., “Nanopore
sequencing and assembly of a human genome with ultra-long reads,”
Nature biotechnology, vol. 36, no. 4, pp. 338–345, 2018.

[60] C. C. Chang, C. C. Chow, L. C. Tellier, S. Vattikuti, S. M. Purcell, and
J. J. Lee, “Second-generation plink: rising to the challenge of larger and
richer datasets,” Gigascience, vol. 4, no. 1, pp. s13 742–015, 2015.

[61] A. Graves, S. Fernández, F. Gomez, and J. Schmidhuber, “Connection-
ist temporal classification: labelling unsegmented sequence data with
recurrent neural networks,” in Proceedings of the 23rd international
conference on Machine learning, 2006, pp. 369–376.

[62] “Medaka,” https://github.com/nanoporetech/medaka.
[63] “Sequence alignment map format specification,” https://samtools.github.

io/hts-specs/SAMv1.pdf.
[64] “Oxford nanopore variant calling workflow (limited support release),”

https://github.com/kishwarshafin/pepper/blob/r0.1/docs/PEPPER
variant calling.md.

[65] R. Luo, C.-L. Wong, Y.-S. Wong, C.-I. Tang, C.-M. Liu, C.-M. Leung,
and T.-W. Lam, “Clair: exploring the limit of using a deep neural
network on pileup data for germline variant calling,” Nature Machine
Intelligence, vol. 2, no. 4, pp. 220–227, 2020.

[66] “Intel vtune profiler,” https://software.intel.com/content/www/us/en/
develop/tools/vtune-profiler.html.

[67] K. Hoste and L. Eeckhout, “Microarchitecture-independent workload
characterization,” IEEE micro, vol. 27, no. 3, pp. 63–72, 2007.

[68] “runsa/runss custom command line analysis,” https://software.intel.com/
content/www/us/en/develop/documentation/vtune-help/top/command-
line-interface/running-command-line-analysis/running-runsa-runss-
custom-analysis-from-the-command-line.html.

[69] “Nvidia visual profiler,” https://developer.nvidia.com/nvidia-visual-
profiler.

[70] M. Farrar, “Striped smith–waterman speeds database searches six times
over other simd implementations,” Bioinformatics, vol. 23, no. 2, pp.
156–161, 2007.

[71] S. Misra, T. C. Pan, K. Mahadik, G. Powley, P. N. Vaidya, M. Vasimud-
din, and S. Aluru, “Performance extraction and suitability analysis
of multi-and many-core architectures for next generation sequencing
secondary analysis,” in Proceedings of the 27th International Conference
on Parallel Architectures and Compilation Techniques, 2018, pp. 1–14.

[72] A. Yasin, “A top-down method for performance analysis and counters
architecture,” in 2014 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS). IEEE, 2014, pp. 35–44.

[73] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman,
“Basic local alignment search tool,” Journal of molecular biology, vol.
215, no. 3, pp. 403–410, 1990.

[74] S. R. Eddy, “Profile hidden markov models.” Bioinformatics (Oxford,
England), vol. 14, no. 9, pp. 755–763, 1998.

[75] W. Chen and C. Hong, “Pbb: a parallel bioinformatics benchmark
suite for shared memory multiprocessors,” in Proceedings of the 2007
Asian technology information program’s (ATIP’s) 3rd workshop on High
performance computing in China: solution approaches to impediments
for high performance computing. ACM, 2007, pp. 141–144.

[76] V. Sachdeva, E. Speight, M. Stephenson, and L. Chen, “Characterizing
and improving the performance of bioinformatics workloads on the
power5 architecture,” in 2007 IEEE 10th International Symposium on
Workload Characterization. IEEE, 2007, pp. 89–97.

[77] M. Hanussek, F. Bartusch, and J. Krüger, “Bootable: Bioinformatics
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